Programme ESC d'E.M.LYON

CONCOURS D'ENTREE 1986

MATHEMATIQUES

1ère épreuve (option scientifique)

Les candidats ne doivent pas faire usage d'aucun document; l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

Nota

- les deux problèmes sont indépendants.
- \bullet N désigne l'ensemble des entiers naturels, et $\mathbb R$ celui des nombres réels.

PROBLEME 1

Partie I

1. Pour $s \in \mathbb{R}$ fixé, résoudre le système (I) à 5 équations, d'inconnue $(x,y,z,t,u) \in \mathbb{R}^5$:

(I)
$$\begin{cases}
-sx + y = 0 \\
x - sy + z = 0 \\
y - sz + t = 0 \\
z - st + u = 0 \\
t - su = 0
\end{cases}$$

(il est conseillé de prendre u comme inconnue auxiliaire).

2. A quelle condition, portant sur s, ce système admet-il une autre solution que l'élément nul de \mathbb{R}^5 ?

Partie II

Pour $n \in \mathbb{N}$, $n \ge 5$, et $s \in \mathbb{R}$ fixés, on se propose de résoudre le système (II) à n équations, d'inconnue $(x_1, \dots, x_n) \in \mathbb{R}^n$

1. Montrer qu'il existe des polynômes $A_1, A_2, \ldots, A_{n-1}$ tels que pour tout $p \in \{1, \ldots, n-1\}$, on ait $x_{n-p} = A_p(s)x_n$, et montrer, pour tout $p \in \{1, \ldots, n-3\}$,

$$A_{p+2}(s) = sA_{p+1}(s) - A_p(s)$$

2. On définit un polynôme A_n par la relation

$$A_n(s) = sA_{n-1}(s) - A_{n-2}(s)$$

Prouver que le système (II) possède des solutions autres que l'élément nul de \mathbb{R}^n si et seulement si $A_n(s) = 0$.

- 3. Déterminer
 - (a) le degré de A_n .
 - (b) Le coefficient du terme de plus haut degré de A_n .
 - (c) Le terme de degré 0 de A_n .
 - (d) La parité de A_n .
 - (e) Le coefficient de s^{n-2} dans $A_n(s)$.

PROBLEME 2

Partie I

1. Pour $n \in \mathbb{N}$, $n \ge 1$, on définit les fonctions P_n et Q_n de \mathbb{R}_+ vers \mathbb{R} par

$$\forall x \in \mathbb{R}_+ \quad P_n(x) = \left\{ \begin{array}{ccc} \left(1 - \frac{x}{n}\right)^n & \text{si } x \leqslant n \\ 0 & \text{si } x > n \end{array} \right. \quad \text{et} \quad Q_n(x) = \left(1 + \frac{x}{n}\right)^{-n}$$

- (a) Etudier les fonctions P_1 , P_2 et P_3 d'une part, Q_1 , Q_2 et Q_3 d'autre part. Tracer leurs courbes représentatives dans un repère orthonormé, l'unité étant prise égale à 4 cm. Pour $i \in \{1, 2, 3\}$, on notera par C_i la courbe représentative de P_i , et par Γ_i celle de Q_i . On tracera enfin sur le même graphique la courbe E représentative de la fonction e^{-x} .
- (b) Montrer que la fonction P_n est de classe C^{n-1} sur \mathbb{R}_+ . Calculer $P_n^{(n)}$. La fonction P_n est-elle de classe C^n sur \mathbb{R}_+ ?
- 2. (a) Soit φ_1 la fonction définie sur [0,1[par

$$\varphi_1(t) = \ln(1-t) + \frac{t}{1-t} = \ln(1-t) - 1 + \frac{1}{1-t}$$

Montrer que $\varphi_1 \geqslant 0$ (on pourra étudier les variations de φ_1), et en déduire les variations de la fonction Ψ_1 définie sur]0,1[par $\Psi_1(t)=\frac{1}{t}\ln(1-t)$.

(b) Soit φ_2 la fonction définie sur \mathbb{R}_+ par

$$\varphi_2(t) = \ln(1+t) - \frac{t}{1+t} = \ln(1+t) - 1 + \frac{1}{1+t}$$

Montrer que $\varphi_2\geqslant 0$ (on pourra étudier les variations de φ_2), et en déduire les variations de la fonction Ψ_2 définie sur \mathbb{R}_+^{\times} par $\Psi_2(t)=-\frac{1}{t}\ln(1+t)$

3. Montrer que, pour $x \in \mathbb{R}_+$ et $n \in \mathbb{N}^\times$, on a

$$P_n(x) \leqslant P_{n+1}(x) \leqslant e^{-x} \leqslant Q_{n+1}(x) \leqslant Q_n(x)$$

- 4. (a) Soit $x \in \mathbb{R}_+$ fixé. Quelle est la limite des suites de terme général $P_n(x)$ et $Q_n(x)$ lorsque $n \to +\infty$?
 - (b) Pour $n \in \mathbb{N}^{\times}$, étudier l'existence des intégrales impropres

$$\int_{0}^{+\infty} P_n(x)dx \quad \text{et} \quad \int_{0}^{+\infty} Q_n(x)dx$$

Lorsqu'elles existent on note $I_n = \int_0^{+\infty} P_n(x) dx$ et $J_n = \int_0^{+\infty} Q_n(x) dx$.

Calculer I_n et J_n . Quelle est la limite des suites de terme général I_n et J_n lorsque $n \to +\infty$?

Partie II

On considère les fonctions f et g définies par :

f considere les fonctions
$$f$$
 et g defin
$$f: \left\{ \begin{array}{ccc} [0,4] & \to & \mathbb{R} \\ x & \mapsto & e^{-x} - P_4(x) \end{array} \right.$$

$$g: \left\{ \begin{array}{ccc} [0,4] & \to & \mathbb{R} \\ x & \mapsto & x + 3\ln\left(1 - \frac{x}{4}\right) \end{array} \right.$$

- 1. Etudier les variations de la fonction g.
- 2. Etablir qu'il existe un unique réel $\alpha \in]1,4[$ tel que $g(\alpha)=0.$
- 3. En déduire les variations de la fonction f.
- 4. (a) Montrer que l'on a l'encadrement : $1, 8 < \alpha < 1, 9$.
 - (b) Calculer une valeur décimale approchée de $f(\alpha)$ à 10^{-2} près.

Partie III

On considère l'intégrale impropre $\int_{0}^{+\infty} e^{-x^4} dx$.

- 1. Montrer l'existence de cette intégrale. On note $I = \int_{0}^{+\infty} e^{-x^4} dx$ Montrer que $I = \int_{0}^{\sqrt{2}} e^{-x^4} dx + \int_{-2}^{+\infty} e^{-x^4} dx$.
- (a) En utilisant la question 4.b de la partie II, montrer :

$$\forall x \in [0, \sqrt{2}], \quad 0 \leqslant e^{-x^4} - P_4(x^4) \leqslant 0.08$$

- (b) Calculer $\int_{0}^{\sqrt{2}} P_4(x^4) dx$ (on pourra utiliser le changement de variable $u = \frac{x}{\sqrt{2}}$), et en donner une valeur décimale approchée à 10^{-2} près.
- (c) En déduire l'encadrement : $0.87 \leqslant \int_{0}^{\sqrt{2}} e^{-x^4} dx \leqslant 1$.
- (a) Montrer: $\int_{-\infty}^{+\infty} e^{-x^4} dx \le \frac{1}{4^{7/4}} \int_{4}^{+\infty} e^{-y} dy$ (on pourra effectuer le changement de variable $y = x^4$).
 - (b) En déduire une valeur décimale approchée de $\int_{\sqrt{2}}^{+\infty} e^{-x^4} dx$ à 10^{-2} près.
- 4. Conclure.