Programme ESC d'E.M.LYON

CONCOURS D'ENTREE 2004

MATHEMATIQUES

1ère épreuve (option scientifique)

Les candidats ne doivent pas faire usage d'aucun document; l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

PROBLEME I

Partie I : Etude de la fonction $x \longmapsto x \int_{0}^{+\infty} \frac{\sin t}{t+x} dt$

On note $F:]0; +\infty[\to \mathbb{R} \text{ et } G:]0; +\infty[\to \mathbb{R} \text{ les applications définies, pour tout réel } x \in]0; +\infty[\text{ par : }]0;$

$$F(x) = \int_{1}^{x} \frac{\sin u}{u} du \quad \text{et} \quad G(x) = \int_{1}^{x} \frac{\cos u}{u} du$$

1. (a) Montrer, pour tout réel $x \in]0; +\infty[$:

$$F(x) = -\frac{\cos x}{x} + \cos 1 - \int_{1}^{x} \frac{\cos u}{u} du.$$

En déduire que F admet une limite finie en $+\infty$. On note α cette limite.

- (b) De manière analogue, montrer que G admet une limite finie en $+\infty$. On note β cette limite.
- (c) En déduire que, pour tout réel $x \in]0; +\infty[$, les intégrales $\int_{x}^{+\infty} \frac{\sin u}{u} du$ et $\int_{x}^{+\infty} \frac{\cos u}{u} du$ convergent, et que :

$$\int_{x}^{+\infty} \frac{\sin u}{u} du = \alpha - F(x) \quad \text{et} \quad \int_{x}^{+\infty} \frac{\cos u}{u} du = \beta - G(x).$$

2. (a) Montrer, pour tout réel $x \in]0; +\infty[$ et tout réel $t \in]0; +\infty[$:

$$\int_{0}^{t} \frac{\sin t}{t+x} dt = \cos x \int_{x}^{x+t} \frac{\sin u}{u} du - \sin x \int_{x}^{x+t} \frac{\cos u}{u} du$$

(b) En déduire que, pour tout réel $x \in]0; +\infty[$, l'intégrale $\int\limits_0^{+\infty} \frac{\sin t}{t+x} dt$ converge et que :

$$\int_{0}^{+\infty} \frac{\sin t}{t+x} dt = \cos x \int_{x}^{+\infty} \frac{\sin u}{u} du - \sin x \int_{x}^{+\infty} \frac{\cos u}{u} du$$

On note $A:]0; +\infty[\to \mathbb{R}$ l'application définie, pour tout réel $x \in]0; +\infty[$, par :

$$A(x) = \int_{0}^{+\infty} \frac{\sin t}{t+x} dt$$

3. Montrer que l'application A est de classe C^2 sur $]0; +\infty[$ et que, pour tout réel $x \in]0; +\infty[$:

$$A''(x) + A(x) = \frac{1}{x}$$

- 4. Établir que A(x) et A'(x) tendent vers 0 lorsque x tend vers $+\infty$.
- 5. (a) Montrer :et $\forall x \in]0;1], \quad 0 \leqslant \int_{x}^{1} \frac{\cos u}{u} du \leqslant -\ln x$
 - (b) En déduire que $\sin x \int_{x}^{+\infty} \frac{\cos u}{u} du$ tend vers 0 lorsque x tend vers 0 par valeurs strictement positives.
 - (c) Montrer que l'intégrale $\int_0^{+\infty} \frac{\sin u}{u} du$ converge, et établir que A(x) tend vers $\int_0^{+\infty} \frac{\sin u}{u} du$ lorsque x tend vers 0 par valeurs strictement positives.

Partie II : Etude de la fonction x donne $\int_{0}^{+\infty} \frac{e^{-xt}}{1+t^2} dt$

1. Montrer que, pour tout réel $x \in]0; +\infty[$ et tout entier naturel k, l'application $t \mapsto t^k e^{-xt}$ est bornée sur $[0; +\infty[$, et en déduire que l'intégrale $\int\limits_0^{+\infty} \frac{t^k e^{-xt}}{1+t^2} dt$ converge.

On note, pour tout entier naturel k, B_k : $]0; +\infty[\to \mathbb{R}$ l'application définie, pour tout réel $x \in]0, +\infty[$.

$$B_k(x) = \int_0^{+\infty} \frac{t^k e^{-xt}}{1 + t^2} dt.$$

2. (a) Montrer, en utilisant par exemple l'inégalité de Taylor-Lagrange :

$$\forall u \in \mathbb{R}, \quad |e^u - 1 - u| \leqslant \frac{u^2}{2} e^{|u|}$$

(b) En déduire, pour tout réel $x\in]0;+\infty[$, pour tout entier naturel k et pour tout réel h tel que $0<|h|\leqslant \frac{x}{2}$:

$$\left| \frac{B_k(x+h) - B_k(x)}{h} + B_{k+1}(x) \right| \le \frac{|h|}{2} B_{k+2}(\frac{x}{2})$$

(c) Montrer que, pour tout entier naturel k, B_k est dérivable sur $]0; +\infty[$ et que :

$$\forall x \in]0; +\infty[, \quad B'_k(x) = -B_{k+1}(x)$$

(d) En déduire que B_0 est de classe C^2 sur $]0; +\infty[$ et que, pour tout réel $x \in]0; +\infty[$:

$$B_0''(x) + B_0(x) = \frac{1}{x}$$

3. Montrer, pour tout réel $x \in]0; +\infty[$:

$$0 \leqslant B_0(x) \leqslant \frac{1}{x}$$
 et $0 \leqslant -B_0'(x) \leqslant \frac{1}{x}$

et en déduire les limites de $B_0(x)$ et $B_0'(x)$ lorsque x tend vers $+\infty$.

4. (a) Montrer:

$$\forall x \in]0; +\infty[, \quad e^{-\sqrt{x}} \int_{0}^{\frac{1}{\sqrt{x}}} \frac{1}{1+t^2} dt \leqslant B_0(x) \leqslant \int_{0}^{+\infty} \frac{1}{1+t^2} dt.$$

- (b) Justifier, pour tout réel $y \in [0; \frac{\pi}{2}[: \int\limits_0^y u = \int\limits_0^{\tan y} \frac{1}{1+t^2} dt$, et en déduire :et $\int\limits_0^{+\infty} \frac{1}{1+t^2} dt = \frac{\pi}{2}$.
- (c) En déduire la limite de $B_0(x)$ lorsque x tend vers 0 par valeurs strictement positives.

Calcul de l'intégrale $\int_{0}^{+\infty} \frac{\sin u}{u} du$

On considère l'application $\varphi:]0; +\infty[\to \mathbb{R}$ définie, pour tout réel $x \in]0; +\infty[$, par :

$$\varphi(x) = A(x) - B_0(x),$$

où A a été définie dans la Partie \mathbf{I} et B_0 a été définie dans la Partie \mathbf{II} . On note $U:]0;+\infty[\to\mathbb{R}$ l'application définie, pour tout réel $x\in]0;+\infty[$, par :

$$U(x) = (\varphi(x))^2 + (\varphi'(x))^2$$

- 1. Montrer que U est constante sur $]0; +\infty[$.
- 2. Quelle est la limite de U(x) lorsque x tend vers $+\infty$?
- 3. En déduire :et $\forall x \in]0; +\infty[, A(x) = B_0(x).$
- 4. Quelle est la valeur de $\int_{0}^{+\infty} \frac{\sin u}{u} du$?

DEUXIÈME PROBLÈME

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2.

 $\mathfrak{M}_n(\mathbb{R})$ est l'ensemble des matrices carrées réelles d'ordre n et $\mathfrak{M}_{n,1}(\mathbb{R})$ l'ensemble des matrices colonnes réelles à n lignes.

Une matrice M de $\mathfrak{M}_n(\mathbb{R})$ ou de $\mathfrak{M}_{n,1}(\mathbb{R})$ est dite positive si et seulement si tous les coefficients de M sont positifs ou nuls. On notera alors $M \ge 0$.

Une matrice M de $\mathfrak{M}_n(\mathbb{R})$ ou de $\mathfrak{M}_{n,1}(\mathbb{R})$ est dite strictement positive si et seulement si tous les coefficients de M sont strictement positifs. On notera alors M > 0.

Si M et N sont deux matrices de ou deux matrices de $\mathfrak{M}_n(\mathbb{R})$ ou de $\mathfrak{M}_{n,1}(\mathbb{R})$, la notation $M \geq N$ (respectivement M > N) signifie que $M - N \geq 0$ (respectivement M - N > 0).

Une matrice M de $\mathfrak{M}_n(\mathbb{R})$ est dite productive si et seulement si elle vérifie les deux conditions suivantes : M est positive et il existe une matrice positive P de $\mathfrak{M}_{n,1}(\mathbb{R})$ telle que P - MP > 0.

Etude d'exemples

- 1. En considérant $U=\begin{pmatrix}1\\1\\1\end{pmatrix}$, montrer que la matrice $A=\frac{1}{3}\begin{pmatrix}0&1&1\\1&0&1\\1&1&0\end{pmatrix}$ est productive.
- 2. Montrer que la matrice $B = \begin{pmatrix} 1 & 4 & 1 \\ 2 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$ n'est pas productive.

Caractérisation des matrices positives

Soit M une matrice de $\mathfrak{M}_n(\mathbb{R})$.

- 1. Montrer que, si M est positive, alors, pour toute matrice positive X de $\mathfrak{M}_{n,1}(\mathbb{R})$, le produit MX est positif.
- 2. Réciproquement, montrer que, si, pour toute matrice positive X de $\mathfrak{M}_{n,1}(\mathbb{R})$, le produit MX est positif, alors la matrice M est positive.

Caractérisation des matrices productives

- 1. Soit A une matrice productive de $\mathfrak{M}_n(\mathbb{R})$ dont le coefficient de la i-ème ligne et de la j-ème colonne est noté a_{ij} , et P une matrice positive de $\mathfrak{M}_{n,1}(\mathbb{R})$ telles que P AP > 0. On note p_1, \ldots, p_n les coefficients de la matrice colonne P.
 - (a) Montrer que P > 0.
 - (b) Soit X appartenant à $\mathfrak{M}_{n,1}(\mathbb{R})$ telle que $X \geqslant AX$. On note x_1, \ldots, x_n les coefficients de la matrice colonne X.

On désigne par c le plus petit des réels $\frac{x_j}{p_j}$ lorsque l'entier j décrit l'ensemble $1, \ldots, n$ et k un

indice tel que $c = \frac{x_k}{p_k}$.

Etablir que $c(p_k - \sum_{j=1}^n a_{kj}p_j) \ge 0$. En déduire que $c \ge 0$ et que X est positive.

- (c) Soit X appartenant à $\mathfrak{M}_{n,1}(\mathbb{R})$ telle que X = AX. En remarquant que $-X \geqslant A(-X)$, montrer que X est nulle.
 - En déduire que $I_n A$ est inversible, où I_n est la matrice identité de $\mathfrak{M}_n(\mathbb{R})$.
- (d) Montrer que, pour toute matrice positive X de $\mathfrak{M}_{n,1}(\mathbb{R})$, la matrice $Y = (I_n A)^{-1}X$ est positive (on pourra utiliser **III.l.b**). En déduire que $(I_n - A)^{-1}$ est positive.
- 2. Dans cette question, on considère une matrice positive B de $\mathfrak{M}_n(\mathbb{R})$ telle que $I_n B$ soit inversible et telle que $(I_n B)^{-1}$ soit positive. On note $V = (I_n B)^{-1}U$, où U est la matrice de $\mathfrak{M}_{n,1}(\mathbb{R})$ dont tous les coefficients sont égaux à 1.

Montrer que V - BV > 0. Conclure.

- 3. Donner une caractérisation des matrices productives.
- 4. Application : Soit M une matrice positive de $\mathfrak{M}_n(\mathbb{R})$ telle que $2M^2=M$.

Vérifier que $(I_n - M)(I_n + 2M) = I_n$ et en déduire que M est productive.