ESG 1991 Option économique

Exercice I

Soit E l'ensemble des applications f de \mathbb{R} dans \mathbb{R} vérifiant les conditions suivantes

$$\forall t \in]-\infty, 0[, \quad f(t) = 0 \quad \text{et} \quad \forall t \in [0, +\infty[, \quad f(t) \geqslant 0]$$

 $f \text{ continue sur }]-\infty, 0[\text{ et } f \text{ continue sur } [0, +\infty[\text{ et } \int_{-\infty}^{+\infty} f(t)dt = 1]$

1. Soit λ un réel strictement positif et soit f la fonction de $\mathbb R$ dans $\mathbb R$ telle aue .

$$\forall t \in]-\infty, 0[, f(t) = 0 \text{ et } \forall t \in [0, +\infty[, f(t) = \lambda e^{-\lambda t}]$$

- (a) Montrer que f appartient à E.
- (b) Etudier les variations de f.
- 2. Soit $\alpha \in \mathbb{R}$ tel que $0 < \alpha < \lambda$. Soit g la fonction de \mathbb{R} dans \mathbb{R} telle que

$$\forall t \in]-\infty, 0[, g(t) = 0 \text{ et } \forall t \in [0, +\infty[, g(t) = \alpha e^{-\alpha t}]$$

Soit $t_1 > 0$ et $f(t_1) = g(t_1)$ et soit $t_2 > t_1$.

Comparer les nombres $\int_{0}^{t_2} f(t)dt$ et $\int_{0}^{t_2} g(t)dt$ puis $\int_{t_1}^{t_2} f(t)dt$ et $\int_{t_1}^{t_2} g(t)dt$.

3. Représenter dans un même repère les graphes des fonctions f et g lorsque $\lambda = 2e$ et $\alpha = e$

Exercice II

A) Soit λ un réel, $\lambda > 0$. Soit X une variable aléatoire réelle absolument continue admettant comme densité de probabilité la fonction f définie par

$$\forall t \in]-\infty, 0[, f(t) = 0 \text{ et } \forall t \in [0, +\infty[, f(t) = \lambda e^{-\lambda t}]$$

Déterminer la fonction de répartition de X.

Calculer l'espérance mathématique et la variance de X.

Rappel: Une telle variable réelle aléatoire X suit une loi exponentielle de paramètre λ

- B) Une firme vend des appareils électriques. On admet que la durée de bon fonctionnement de chacun de ces appareils exprimée en mois est une variable aléatoire X qui suit une loi exponentielle de paramètre λ . On suppose que chacun de ces appareils a une probabilité p=0,02 de tomber en panne pendant les six premiers mois de son utilisation.
 - 1. Déterminer le paramètre λ de la loi de X; on donne logarithme népérien de 0,98=-0,02
 - 2. Calculer la probabilité de l'évènement $X \ge 8$ sachant $X \ge 2$.
 - 3. Cette firme a vendu N appareils. Soit Y la variable aléatoire égale au nombre d'appareils qui tombent en panne pendant les six premiers mois de leur utilisation, déterminer la loi de probabilité de Y et calculer l'espérance mathématique et la variance de Y.
 - 4. On suppose N = 100. En utilisant une approximation de Y par une loi de Poisson, calculer la probabilité de l'évènement (Y = 4) puis de (Y > 4).

5. La firme envisage de vendre ces appareils avec une garantie de six mois et pour cela majore de 20 F le prix de chaque appareil. En revanche, elle assume durant cette période de garantie, les réparations (toujours de même nature) qui lui coûtent 500 F par réparation.

La majoration du prix de vente par appareil suffit-elle à couvrir avec une probabilité supérieure ou égale à 0,90 les frais de réparations entrainés par cette politique de vente dans le cas où

(a)
$$N = 100$$
?

(b)
$$N = 200$$
?

On donne
$$\sum_{k=0}^{7} e^{-4} \frac{4^k}{k!} = 0,9489$$

Exercice III

Soit $\mathcal M$ l'ensemble des matrices carrées d'ordre 2 à coefficients réels

I. Soit $A \in \mathcal{M}$, on pose $A = (a_{i,j})$ $a_{i,j}$ désigne le terme de la matrice situé à la $i^{i\grave{e}me}$ ligne et la $j^{i\grave{e}me}$ colonne. Soit f l'application de \mathcal{M} dans \mathbb{R} telle que :

$$\forall A \in \mathcal{M}, \quad f : A = (a_{i,j}) \mapsto f(A) = \sum_{i=1}^{2} a_{i,i}$$

- 1) Montrer que f est linéaire et que $\forall A \in \mathcal{M}, \forall B \in \mathcal{M}, f(AB) = f(BA)$.
- 2) Soit $E = \{A \in \mathcal{M} \text{ telles que } f(A) = 0\}.$ Montrer que E est un sous-espace vectoriel de \mathcal{M} .
- 3) Déterminer 3 matrices J, K, L appartenant à \mathcal{M} telles que (J, K, L) constituent une base de E.
- 4) Montrer que si A et B sont deux matrices de \mathcal{M} semblables alors f(A) = f(B).
- II. Soit F l'ensemble des matrices de \mathcal{M} de la forme

$$\begin{pmatrix} a & c \\ 1-a & 1-c \end{pmatrix} \text{ avec } 0 < a < 1 \text{ et } 0 < c < 1$$

Soit
$$A \in F$$
, on pose $A = \begin{pmatrix} a & c \\ 1-a & 1-c \end{pmatrix}$ et soit $P = \begin{pmatrix} 1 & c \\ -1 & 1-a \end{pmatrix}$.

- 1) Calculer $P^{-1}AP$.
- 2) En déduire que $\forall n \in \mathbb{N}^{\times}, \quad A^n \in F$.
- 3) On pose $\forall n \in \mathbb{N}^{\times}, \quad A^n = \begin{pmatrix} u_n & w_n \\ v_n & z_n \end{pmatrix}.$
 - a. Déterminer les limites des suites (u_n) , (v_n) , (w_n) , (z_n) .
 - b. Soient u, v, w, z les limites respectives de ces quatre suites. Montrer que la matrice $\begin{pmatrix} u & w \\ v & z \end{pmatrix}$ est un élément de F