1 Exercices

Exercice 1.1 Soient a, n, m, q et r cinq entiers naturels tels que m > n > 0, m = qn + r, $0 \le r < n$

- 1. Effectuer la division euclidienne de $a^m 1$ par $a^n 1$.
- 2. Déterminer le pgcd de $a^n 1$ et $a^m 1$

Exercice 1.2 L'ensemble $\mathcal{A} = \{\frac{n}{2^k}, (n,k) \in \mathbb{Z}^2\}$ est-il un anneau commutatif (pour les lois usuelles de \mathbb{R})? Un corps?

Exercice 1.3 Soient a, n et m trois entiers naturels non nuls.

- 1. Effectuer la division de $a^{nm} + 1$ par $a^n + 1$ lorsque m est impair.
- 2. Soit $a \in \mathbb{N}$ tel que $a^n + 1$ soit premier, montrer que $\exists k \in \mathbb{N}, \quad n = 2^k$.
- 3. Montrer par récurence que $\forall n \in \mathbb{N}, \forall k \ge 1$ on a :

$$2^{2^{n+k}} - 1 = \left(2^{2^n} - 1\right) \times \prod_{i=0}^{k-1} (2^{2^{n+i}} + 1).$$

- 4. On pose $F_n = 2^{2^n} + 1$. Montrer que pour $m \neq n$, F_n et F_m sont premiers entre eux.
- 5. En déduire qu'il y a une infinité de nombres premiers

Exercise 1.4 Soit
$$\alpha = \frac{1 + i\sqrt{3}}{2}$$
 et $\mathbb{Z}[\alpha] = \{n + m\alpha, (n, m) \in \mathbb{Z}^2\}$ et $\mathbb{Q}[\alpha] = \{a + b\alpha, (a, b) \in \mathbb{Q}^2\}$

- 1. Montrer que $\mathbb{Q}[\alpha]$ est un corps et que $\mathbb{Z}[\alpha]$ est un anneau.
- 2. Montrer que $N: a+b\alpha \mapsto a^2+ab+b^2$ est un morphisme du groupe $(\mathbb{Q}[\alpha]\setminus\{0\},\times)$ dans \mathbb{Q} et que $N(\mathbb{Z}[\alpha])\subset \mathbb{Z}$.
- 3. Déterminer les éléments inversibles de $\mathbb{Z}[\alpha]$

Exercice 1.5 1. Montrer que pour tout entier $n \in \mathbb{N}$, il existe deux entiers a_n et b_n tels que : $(1+\sqrt{2})^n = a_n + \sqrt{2}b_n$

- 2. Montrer que a_n et b_n sont premiers entre eux.
- 3. Montrer que $\forall n \ge 0$, $(a_n)^2 2(b_n)^2 = (-1)^n$. Cette relation permet-elle de retrouver le résultat du 2 ?
- 4. Etude des suites $(a_n)_n$ et $(b_n)_n$.
 - (a) Montrer que $\forall n \ge 0$, $a_{n+1} + b_{n+1} \ge 2(a_n + b_n)$.
 - (b) Quelle est la limite de la suite $(a_n + b_n)_n$? En déduire les limites des suites $(a_n)_n$ et $(b_n)_n$.
 - (c) Déterminer la limite de la suite $(\frac{a_n}{b_n})_n$.

2 Indications

Indication pour l'exercice 1.1:

- 1. Effectuer la division de la même façon que la division des polynômes (a = x !!). Faire apparaître la forme du quotient et du reste et prouver le résultat en explicitant le quotient partiel et le reste partiel à la kême étape et en prouvant alors que l'étape (k + 1)ême est de la même forme. On remarquera que q peut être vu comme le plus grand entier k tel que m − nk soit positif. On obtiendra alors comme reste ar − 1 et comme quotient am−n + am−2n + ··· + ar + 1
- 2. On constate que $pgcd(a^m 1, a^n 1) = pgcd(a^n 1, a^r 1)$ et que pgcd(m, n) = pgcd(n, r). En itérant le processus, la méthode d'Euclide montre que le processus s'achève en un nombre fini d'étape et que le dernier " r " non nul est le pgcd(m, n), ce qui se transpose sur $a^m 1, ...$

Indication pour l'exercice 1.2 : Utiliser la caractérisation des sous-anneaux.

Pour la structure de corps, quel est l'inverse de 3?

Indication pour l'exercice 1.3:

- 1. Effectuer la division de la même façon que la division des polynômes $(a = x \,!!)$. Faire apparaître la forme du quotient et du reste et prouver le résultat en explicitant le quotient partiel et le reste partiel à la $k^{\text{ème}}$ étape et en prouvant alors que l'étape $(k+1)^{\text{ème}}$ est de la même forme. On obtiendra alors comme reste $(-1)^m + 1$ et comme quotient $a^{(m-1)n} a^{(m-2)n} + a^{(m-3)n} \cdots a + 1$
- 2. Ecrire n sous la forme $2^k m$ avec m un impair et k le plus grand entier tel que 2^k divise a et utiliser la question précédente.
- 3. Faire une récurrence sur n (valable pour tout k) et pour l'hérédité, remarquez que $2^{2^{n+1+k}}-1=(2^{2^{n+k}})^2-1$
- 4. Utiliser la question 1 pour effectuer la division de F_m par F_n lorsque m > n et en déduire que le seul diviseur possible de F_n et F_m est 1 ou 2.
- 5. A chaque F_n est associé au moins un diviseur premier p_n et l'application $F_n \mapsto p_n$ est injective (les F_n sont deux à deux premiers entre eux)

Indication pour l'exercice 1.4:

- 1. Utiliser la caractérisation des sous-corps et des sous-anneaux (par exemple, (développer $(a + b\alpha)(a' + b'\alpha)$ et exprimer α^2 en fonction de α et 1 pour justifier que $(a + b\alpha)(a' + b'\alpha) \in \mathbb{Q}[\alpha]$)
- 2. Remarquer que $N(a+b\alpha)=(a+b\alpha)(a+b\overline{\alpha})$ pour vérifier qu'il s'agit d'un morphisme.
- 3. Si $u=a+b\alpha$ est inversible alors il existe v tel que uv=1 donc N(u)N(v)=1, ce qui implique que N(u) est inversible dans $\mathbb Z$ donc N(u)=??? Ensuite, utiliser que $|ab|\leqslant \frac{1}{2}(a^2+b^2)$ pour obtenir une majoration de a^2+b^2 puis obtenir les valeurs possibles de a et b. Tester alors les diverses possibilités pour u.

Indication pour l'exercice 1.5:

- 1. Procéder par récurrence en explicitant a_{n+1} et b_{n+1} en fonction de a_n et b_n ou bien utiliser la formule du binôme de Newton en séparant les exposants pairs des impairs $(\sqrt{2}^{2k} = 2^k \text{ et } \sqrt{2}^{2k+1} = 2^k \sqrt{2})$ Il est conseillé de faire les deux méthodes.
- 2. Soit on procède par récurrence en utilisant l'expression de a_{n+1} et b_{n+1} en fonction de a_n et b_n soit en remarquant que $\frac{1}{(1+\sqrt{2})^n} = (-1)^n (1-\sqrt{2})^n$ et en remarquant que $(1-\sqrt{2})^n$ s'écrit $a'_n + b'_n \sqrt{2}$ et en effectuant le produit $(1+\sqrt{2})^n (1-\sqrt{2})^n$, on obtient une relation de Bezout sur (a_n,b_n) Montrer que a_n et b_n sont premiers entre eux. Il est conseillé de faire les deux méthodes.
- 3. En procédant selon l'une des méthodes de l'exercice 2, on obtient directement le résultat.
- 4. (a) Exprimer a_{n+1} et b_{n+1} en fonction de a_n et b_n , l'inégalité en découle directement
 - (b) Montrer par récurrence que $a_n + b_n \ge 2^n (a_0 + b_0)$. L'expression de b_{n+1} en fonction de a_n et b_n fournit la limite de b_{n+1} et l'inégalité $a_{n+1} \ge 2b_n$ (qui provient de l'expression de a_{n+1} en fonction de a_n et b_n) donne la limite de a_{n+1}
 - (c) Utiliser la question 3 et diviser par b_n .

3 Corrections

Correction de l'exercice 1.1 : Indisponible actuellement (mais cela va venir)

Correction de l'exercice 1.2 : Indisponible actuellement (mais cela va venir)

Correction de l'exercice 1.3 : Indisponible actuellement (mais cela va venir)

Correction de l'exercice 1.4 : Indisponible actuellement (mais cela va venir)

Correction de l'exercice 1.5 : Indisponible actuellement (mais cela va venir)